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We derive the scaling dimension associated with crossing bonds in the random-cluster representation of the
two-dimensional Potts model by means of a mapping on the Coulomb gas. The scaling field associated with
crossing bonds appears to be irrelevant on the critical as well as on the tricritical branch. The latter result stands
in a remarkable contrast with the existing result for the tricritical O�n� model that crossing bonds are relevant.
Although the O�1� model is equivalent with the q=2 random-cluster model, the crossing-bond exponents
obtained for these two models appear to be different. We provide an explanation of this peculiar observation.
In order to obtain an independent confirmation of the Coulomb gas result for the crossing-bond exponent, we
perform a finite-size-scaling analysis based on numerical transfer-matrix calculations.
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I. INTRODUCTION

In general one may expect that there exist large regions in
the parameter space of the Hamiltonian of a critical system
that belong to a single universality class or, stated in a dif-
ferent way, the critical exponents, in general, do not depend
on the microscopic details of the Hamiltonian. The micro-
scopic details will usually only contribute to the irrelevant
fields as defined in the renormalization theory �1�, and
thereby influence the correction-to-scaling amplitudes. It is
therefore surprising that it was found that the introduction of
next-nearest-neighbor interactions in certain two-
dimensional O�n� models, specified below, does affect the
leading critical behavior.

In most exactly solved O�n� loop models, the loops do not
cross or intersect, so that the loops are not entangled. The
introduction of next-nearest-neighbor interactions, i.e., cross-
ing bonds, in the square-lattice O�n� model leads, however,
to a different situation. The crossing of two different loop
segments produces a “defect” that can be neutralized at a
second crossing of the loop segments or at an ordinary vertex
where two of the loop segments emerging from the intersec-
tion point connect. Here the word “intersection” refers to the
projection of the loop segments on a planar lattice; the two
loop segments should be considered as to remain separated
from one another.

In the analysis of connected correlation functions between
two crossings, one has to treat these loop crossings as topo-
logical defects, i.e., the annihilation of a defect at an ordinary
vertex has to be disabled. Thus, we have a vertex with four
outgoing loop segments at position 0, and the four segments
come in at a vertex at position r. It is the “watermelon”
diagram with four lines.

After a mapping on the Coulomb gas, these two loop
crossings are represented by known electric and magnetic
charges �2,3�, so that the renormalization exponent associ-
ated with the fugacity of the crossings follows immediately.
It is the same exponent as the one describing cubic crossover
in the O�n� model, y=2−2g+ �1−g�2 / �2g�, where g is re-

lated to n by n=−2 cos��g�, with 1�g�2 for the critical
branch and with 0�g�1 for the low-temperature branch. It
is irrelevant in the critical two-dimensional O�n� model with
n�2, but it becomes marginal at n=2 and relevant in the
low-temperature branch of the O�n� model �2�. It was found
by Jacobsen et al. �4� that crossing bonds do indeed induce
crossover to a new universality class �5� in the low-
temperature branch. Another recent result establishes a rela-
tion between the partition sum of the low-temperature branch
of the O�n� model and that of a tricritical O�n� model �6�.
The exponent associated with crossing bonds remains un-
changed under this mapping. Therefore, crossing bonds are
relevant in the tricritical O�n� model. However, the case
n=1, i.e., the tricritical Ising model, is not believed to be
unstable with respect to crossing bonds and is therefore in-
terpreted as a special case, apparently because the truncation
of the spin dimensionality to n=1 in effect eliminates the
amplitudes associated with the effects of scaling fields acting
on the other spin components.

These findings for the low-temperature and the tricritical
O�n� model raise the question what are the consequences of
crossing bonds in the two-dimensional Potts model �7,8� and
the equivalent random-cluster model �9�, and also in the re-
lated tricritical models. The Potts model is defined in terms
of lattice variables �i that can assume the discrete values
1 ,2 , . . . ,q, and the index i refers to the lattice site. The re-
duced Hamiltonian of the model is

H/kBT = − K�
�ij�

��i,�j
, �1�

where K is the Potts coupling, inversely proportional to the
temperature. The summation indicated by �ij� is over all in-
teracting nearest-neighbor pairs of Potts variables. A gener-
alization to continuous q is obtained by mapping model �1�
onto the Kasteleyn-Fortuin random-cluster model �9�, whose
partition sum is
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Z�q,K� = �
�b	

unbqnc, �2�

where the sum is over all graphs �b	 formed by independent
bond variables �absent or present�, the bond weight is given
by u=1−e−K, nb is the number of present bonds, and nc is the
number of clusters formed by these bonds. The number q of
Potts states now appears as a continuous variable, so that the
random-cluster model can be seen as a generalization of the
Potts model. In the limit q→1 it reduces to the bond-
percolation model. The presence of crossing bonds in a per-
colation model �10� has been investigated, but that work did
not yield evidence for a possible modification of the finite-
size-scaling behavior.

This question about the effects of crossing bonds in this
model will be answered below. In Sec. II we derive the scal-
ing dimension associated with crossing bonds analytically
with the help of a renormalization mapping of the Potts
model on the Coulomb gas. The validity of this analytic re-
sult is checked numerically in Sec. III by means of a transfer-
matrix analysis combined with finite-size scaling. A short
discussion in Sec. IV concludes this paper.

II. COULOMB GAS

The mapping of the random-cluster model on the Cou-
lomb gas involves, as a first step, the representation of the
random clusters by means of loops on the surrounding lat-
tice. For a random-cluster model without crossing bonds, one
obtains a system of nonintersecting loops �11�. Let us now
consider the defect introduced by the crossing or intersection
of two random-cluster bonds. The four random-cluster bond
segments going out from the intersection point are repre-
sented by eight outgoing loop segments. This is an important
difference with the O�n� loop model, where one has four
outgoing loop segments. While these crossing bonds intro-
duce an entangled random-cluster configuration, the en-
tanglement can be eliminated at ordinary vertices where
random-cluster bonds meet. However, we are interested in
the connected correlation function g�r� associated with two
of these crossing-bond vertices separated by a distance r.
Thus, we have to treat the defects as topological defects and
disable the annihilation of entanglement at ordinary vertices.
The two special vertices are connected by four different ran-
dom clusters. In the language of the surrounding loop model,
we have to analyze the watermelon diagram with eight legs,
as illustrated in Fig. 1.

In the Coulomb gas, both of these vertices are represented
by a charge consisting of an electric and a magnetic compo-
nent �2�. At position 0 and r, these charges are denoted as
�e0 ,m0� and �er ,mr�, respectively. Here, m0=−mr=4 is half
the number of loop segments of the watermelon diagram,
and e0=er=1−g is determined by the Coulomb gas coupling
constant g which is known as a function of the number of
Potts states of the critical random-cluster model,

g = 1 −
1

2�
arccos
q

2
− 1� . �3�

The decay of the correlation function g�r� as a function of r
is as g�r��r−2Xx, governed by the scaling dimension Xx. The

scaling dimensions associated with a general pair of charges
is given by

X�e,m� = −
e0er

2g
−

m0mrg

2
, �4�

which implies, in the present case,

Xx = 1 −
1

2g
+

15g

2
. �5�

III. TRANSFER-MATRIX ANALYSIS

Transfer-matrix calculations usually apply to a system
wrapped on a cylinder with a finite circumference L, while
the limit is taken of an infinite length. In transfer-matrix
calculations on random-cluster models, the concept of “con-
nectivity” is an essential ingredient. For a square-lattice
model with only nearest-neighbor couplings, wrapped on a
cylinder with an open end, there are L sites located at this
end. Sites that belong to the same cluster are said to be
connected. Each of the L end sites can thus be connected to
zero or more other end sites; the precise way in which the
end sites are connected is called connectivity. These connec-
tivities can be coded by means of subsequent integers, which
then serve as a transfer-matrix index. We denote the partition
sum of a model with L�M sites on a cylinder as Z�M�. Then,
Z�M� can be divided into a number of restricted sums accord-
ing to the index � of the connectivity of the Mth row, i.e.,
Z�M�=��Z�

�M�. Then, the restricted sums for a model with
M +1 layers of L sites can be written as a linear combination
of the restricted sums for a system with M layers �12�,

Z�
�M+1� = �

	

T�	Z	
�M�, �6�

where the coefficients T�	 define the transfer matrix T.
The number of connectivities for a finite size L, as well as

the way they are coded, still depends on the type of random-
cluster model. In the absence of a magnetic field, and for

FIG. 1. Random-cluster configuration with two crossing-bond
vertices, and the corresponding loop configuration on the surround-
ing lattice. The two vertices are connected by four random clusters,
each of which is surrounded by two loop segments. The two verti-
ces are thus connected by eight loop segments.
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nearest-neighbor bonds only, the connectivities are “well
nested.” This means that if the end sites numbered i and j are
connected, and k and l are connected, while the pair i , j is not
connected to k , l, then the case i�k� j� l is excluded. The
random-cluster bonds are not entangled. More details, in-
cluding a full description of the coding algorithm, appear in
Ref. �13�.

A. Entangled random clusters

The problem defined in Sec. I does, however, require the
introduction of entangled random-cluster configurations. For
the general problem of a random-cluster model with crossing
bonds, one has to provide a different coding algorithm which
allows only the analysis of a very limited range of finite sizes
�10� because of the rapid increase with L of the required
number of connectivities. A better approach is the use of the
“magnetic” connectivities, also defined in Ref. �13�, which
enable the introduction of a nonzero magnetic field. While
we are not interested in the introduction of a field here, we
do use the property of these magnetic connectivities that they
allow for one magnetic cluster that need not be well nested in
combination with other clusters. The occurrence of such a
cluster is sufficient for our present purposes. The number of
these magnetic connectivities increases less rapidly with L
than that of the entangled connectivities used in Ref. �10� for
a crossing-bond model.

In our transfer-matrix analysis, we have to perform the
calculation of the exponent associated with the connected
correlation function between two vertices with four outgoing
random-cluster bonds. Thus there exist four random clusters,
which are not mutually connected �except at the two verti-
ces�, and each of these clusters connects to precisely one
outgoing bond of each of the two vertices. The calculation of
this exponent can be done by means of transfer matrices,
with the help of Cardy’s conformal mapping �14� between
the infinite plane and a cylinder with circumference L. The
mapping of a conformally invariant model between these
two geometries shows that the scaling dimension Xx describ-
ing the algebraic decay of the correlation function g�r�
�r−2Xx in the infinite plane is related to the length scale 
x�L�
describing the exponential decay of the analogous correlation
function with distance in the cylindrical geometry �14� as

Xx �
L

2�
x�L�
. �7�

For a system at criticality, this relation may be expected to
hold only in the limit of L→� because the irrelevant fields
that are usually present cause deviations from the conformal
symmetry. But, in many cases, the calculation of 
 for a
limited number of system sizes still allows a reasonably ac-
curate estimate of the scaling dimension X. The correlation
length 
x�L� is related to eigenvalues �x of the transfer ma-
trix as


x
−1�L� =  ln

�0�L�
�x�L�

, �8�

with the geometrical factor  �the ratio between the unit of L
and the thickness of a layer added by T�, �0�L� is the largest

eigenvalue of T, and �x�L� is the eigenvalue associated with
the connected correlation function between the two vertices.
One of the remaining tasks is thus to identify the latter ei-
genvalue in the spectrum of T.

B. Block structure of the transfer matrix

To determine the eigenvalue �x�L�, we divide the connec-
tivities in two groups: the first group contains the well-nested
ones labeled by a subscript w and the second group the en-
tangled ones, labeled by a subscript e. The transfer matrix
can then, in obvious notation, be divided in four blocks as

T = Tww Twe

0ew Tee
� , �9�

where the lower-left block contains only zeros because the
Hamiltonian does not contain crossing bonds, and the trans-
fer matrix is thus unable to form entangled states out of
well-nested ones. As a consequence, the transpose transfer
matrix Tt cannot form well-nested states out of entangled
ones. The eigenvalue problem of T in effect decomposes in
the two separate eigenvalue problems of Tww and Tee. Our
algorithm to find the eigenvalues �13� is based on the analy-
sis of a sequence of vectors obtained by the repeated multi-
plication of an initial vector by Tt. Thus, if we use an initial
vector that contains only entangled states, we easily obtain
the largest eigenvalue of the diagonal block Tee. Naturally,
the largest eigenvalue of Tee will be associated with the
“least entangled states” in which only two clusters are en-
tangled, as for instance the four-site connectivity in which
site 1 is connected to 3, and 2 to 4. That is precisely the set
of connectivities describing the correlation between two of
the aforementioned vertices, which, in the geometry of an
infinitely long cylinder, are thought to be located at ��.

C. Finite-size analysis

The eigenvalues �0�L� and �x�L� were calculated numeri-
cally as described above for finite sizes up to L=15, for
which the number of connectivities is 390 248 055. This was
done for two different transfer matrices. First, we chose the
transfer direction parallel to a set of lattice edges, and sec-
ond, we chose it in the direction of a set of diagonals of the
elementary faces of the square lattice. The latter method can
handle larger system sizes when expressed in lattice edges,
although the number of finite sizes is the same. Since the
finite-size parameter L denotes the number of sites added by
a multiplication by Tt, the circumference of the cylinder is L
lattice edges for the “parallel” transfer matrix and L�2 lattice
edges for the “diagonal” transfer matrix. The geometric fac-
tors are =1 and =1 /2, respectively, because we express

x�L� in the same units as L.

A convenient quantity in the finite-size analysis is the
“scaled gap” which depends here �except on the type of the
transfer matrix� only on L because the Potts coupling is set at
its critical value. This quantity is defined as

Xx�L� = L/�2�
x�L�� . �10�

In the vicinity of a renormalization fixed point, finite-size
scaling leads to the equation
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Xx�L� = Xx + auLyu + ¯ , �11�

where yu is an irrelevant exponent and au is the associated
finite-size amplitude, and the dots stand for further finite-size
corrections. The first step of the estimation of the scaling
dimension Xx is done by means of power-law fits according
to this equation. The resulting estimates are expected to de-
pend, again, on L as a power law. Thus, better estimates can
be obtained by means of an iterated fitting procedure. Up to
four iteration steps were made. We tried several variations in
the fitting procedure, concerning the use of a priori knowl-
edge of the exponents of the finite-size dependences. We
expect corrections described by the integer exponent −2, as
well as by the irrelevant Potts exponent �2�. Further details
appear in Refs. �13,15�. The numerical uncertainties in Xx
were roughly estimated from the variation in its fitted value
with increasing system size. The best estimates, and the es-
timated error margins, are shown in Table I and Fig. 2, to-
gether with the theoretical values derived in Sec. II.

IV. DISCUSSION

The introduction of next-nearest-neighbor couplings in
Potts models increases the size of the transfer matrix and,

thus, leads to new eigenvalues, of which we have associated
one with the scaling dimension Xx. Our analysis was only
focused on the determination of Xx. Of course, the appear-
ance of effects described by this scaling dimension is only
one of the consequences. The new couplings also increase
the range of the interactions, and this influences the irrel-
evant field and its associated corrections to scaling �16�. This
effect is well known and outside the scope of the present
paper.

Most of the numerical data in Table I agree well with the
Coulomb gas prediction. But it is clear that the agreement
deteriorates near q=4, where the error estimates become
quite large, but not large enough to explain the difference
with the Coulomb gas result. This problem is explained in
terms of the behavior of the second thermal exponent of the
Potts model, which is strongly irrelevant for small q, but
increases with q and becomes marginal at q=4. This explains
why the fast convergence at small q deteriorates for larger q,
in particular at q=4 where a logarithmic correction factor
leads to misleading finite-size fits, which assume a power-
law behavior instead.

We thus conclude that our numerical analysis is in agree-
ment with the theoretical predictions. The consistency be-
tween the theory and the numerical results for the scaling
dimension associated with crossing bonds is quite reassuring.

In general one expects a different scaling behavior of the
O�n� model with respect to the q-state random-cluster model
as long as the spin representations of the two models have
different symmetries. But for n=1 and q=2, both models
reduce to the Ising model, and therefore they belong to the
same universality class. The complete spectrum of scaling
dimensions predicted by conformal invariance �17,18�, rel-
evant as well as irrelevant, has to be identical. However, a
comparison between the results for the crossing-bond expo-
nents of both models does reveal a peculiar difference. For
the critical O�1� model, one finds Xx=21 /8 �2�, whereas Eq.
�5� yields Xx=143 /24 for the q=2 random-cluster model.
Observable effects due to these exponents may be expected
in some observable correlation functions, and in certain cor-
rections to scaling. The difference thus seems sufficiently
paradoxical to invite some further explanation.

First we note that for the Ising case, the scaling behavior
of the thermodynamic observables is determined by a very

TABLE I. Results of transfer-matrix calculations for the
crossing-bond dimension. The numerical results for Xx are indicated
by the superscript “num.” They were determined using two differ-
ent transfer-matrix methods: with the transfer direction parallel to a
set of edges of the square lattice, as indicated by “�e�,” and with
transfer direction parallel to a set of diagonals of the elementary
faces, as indicated by “�d�.” The estimated error in the last decimal
place is shown between the parentheses. For comparison we also
show the Coulomb gas prediction in the last column.

q Xx
num�e� Error Xx

num�d� Error Xx theory

0.0001 3.76511 �1� 3.765110 �2� 3.765110

0.001 3.79772 �1� 3.797715 �2� 3.797714

0.01 3.90028 �1� 3.900277 �2� 3.900278

0.10 4.22087 �1� 4.220862 �5� 4.220863

0.25 4.49180 �2� 4.49180 �1� 4.491800

0.50 4.7997 �1� 4.79970 �5� 4.799728

0.75 5.0411 �1� 5.0410 �1� 5.040971

1.00 5.2500 �1� 5.2500 �1� 5.250000

1.25 5.4404 �1� 5.4404 �1� 5.440283

1.50 5.6190 �2� 5.6192 �2� 5.618945

1.75 5.790 �1� 5.7912 �5� 5.790520

2.00 5.957 �1� 5.959 �1� 5.958333

2.25 6.123 �2� 6.127 �2� 6.125203

2.50 6.290 �5� 6.295 �2� 6.293876

2.75 6.46 �1� 6.468 �2� 6.467453

3.00 6.63 �2� 6.648 �5� 6.650000

3.25 6.80 �5� 6.84 �1� 6.847755

3.50 7.1 �1� 7.05 �1� 7.072311

3.75 7.3 �2� 7.3 �1� 7.353038

4.00 7.4 �5� 7.5 �1� 8.000000
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FIG. 2. �Color online� Results for the scaling dimension Xx as-
sociated with crossing bonds in the random-cluster model as a func-
tion of the number q of Potts states. The symbols show the averages
of the numerical results obtained from the two transfer matrices.
The curve shows the Coulomb gas result.
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limited set of scaling fields associated with primary operators
in the conformal field theory �17�. The critical amplitudes
associated with other scaling fields vanish in thermodynamic
quantities but may appear in, e.g., the fractal dimensions of
spin clusters or percolation clusters defined on the ensemble
of configurations generated by Eqs. �1� and �2�. The geomet-
ric correlations and the scaling dimensions associated with
crossing bonds in the q=2 random-cluster bonds should
naturally be different from those associated with crossing
bonds in the O�1� model because the two corresponding
Coulomb gas descriptions are based on two different graph
expansions of the Ising model.

In the notation based on the Kac formula �18� for the
dimensions of rotationally invariant observables, namely,

Xp,q =
�p�m + 1� − qm�2 − 1

2m�m + 1�
, �12�

where m=g / �1−g� for the critical Potts model, the Coulomb
gas result Eq. �5� can be written as

Xx = X0,4. �13�

This is outside the restricted set of operators �17� with 1
� p�m, 1�q�m+1, which describe the thermodynamics

of unitary models. Thus, for critical Potts models with inte-
ger q, effects described by the dimension Xx should be absent
in the thermodynamic behavior but may still appear in fractal
and geometric properties of critical spin configurations.

Finally, we note that the Coulomb gas result Eq. �5� for
dimension Xx also applies to the tricritical branch of the
random-cluster model, with g=1+arccos�q /2−1� / �2�� in-
stead of Eq. �3�, which implies that the crossing-bond dimen-
sion is even larger, i.e., more irrelevant, than that on the
critical branch. We recall that, in contrast, the crossing-bond
exponent is relevant in the tricritical O�n� model.
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